回归分析
线性回归
scikit-learn提供了广义线性模型模块sklearn.linear_model. 它定义线性模型为:
linear_model模块提供用于线性回归的类:
class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
|
- 生成一个LinearRegression类的实例。
- 使用该实例调用
fit()
方法来拟合数组 X, y - fit(X, y, sample_weight=None),其中X, y接收数组,分别代表训练集和目标。
- 将线性模型的系数w存储在其成员变量coef_中。
- 用户可通过访问coef_和intercept_观察拟合的方程中,各自变量的系数和截距。
- 使用
predict()
方法能够预测一个新的样本的回归值: - predict(X),其中X是新的样本。
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.linear_model import LinearRegression
path='D:/my_python/ch7/data/' X = pd.read_csv(path+'1x_regression.csv',sep = ',',encoding = 'utf-8').values plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus']=False plt.rc('font', size=14) plt.figure(figsize=(4, 3)) plt.title('原始数据散点图') plt.xlabel('x') plt.ylabel('y')
plt.scatter(X[:,0], X[:,1]) plt.show() lr = LinearRegression()
plt.figure(figsize=(4, 3)) lr.fit(X[:,0].reshape(-1,1), X[:,1].reshape(-1,1))
plt.scatter(X[:,0], X[:,1]) plt.plot(X[:,0], lr.predict(X[:,0].reshape(-1,1)), 'k-') plt.title('原始数据与回归方程图') plt.xlabel('x') plt.ylabel('y') plt.show() print('回归方程为:\n','y=',lr.coef_[0],'*x+',lr.intercept_[0]) for x in range(10): print('x=',x,'时,y的预测值为:',lr.predict(x))
|
岭回归
scikit-learn的sklearn.linear_model模块提供了岭回归Ridge()
类:
class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, random_state=None)
|
其主要参数alpha即为上式中的我们所说的λ.
Ridge()
类的主要属性有:
coef_ : 数组,形状为(n_features,)或(n_targets, n_features),表示权重向量。
intercept_ : 浮点数,表示截距。
n_iter_ : 数组,形状为(n_targets,),表示每个目标的迭代次数,可以是None。
Ridge()
类的主要方法有:
fit(X, y[, sample_weight])——拟合岭回归模型。
get_params([deep])——获取估计器参数。
predict(X)——预测X中样本的回归值。
score(X, y[, sample_weight])——返回R^2决策系数的预测值。
set_params(**params)——设置估计器参数。
岭回归
import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import datasets n_samples=100
X, y = datasets.make_classification(n_samples=n_samples, n_features=10, n_informative=2, n_redundant=7, n_classes=2) import seaborn as sns sns.pairplot(pd.DataFrame(X))
b,a0,a1,a2,a3,a4,a5,a6,a7,a8,a9=3,-5,4,8,-9,-3,6,2,-1,3,7 noise=np.random.randn(n_samples)
y=2*noise+b+a0*X[:,0]+a1*X[:,1]+a2*X[:,2]+a3*X[:,3]+a4*X[:,4]+\ a5*X[:,5]+a6*X[:,6]+a7*X[:,7]+a8*X[:,8]+a9*X[:,9] from sklearn import linear_model
plt.figure(figsize=(6,4)) plt.rc('font', size=14) plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus']=False plt.plot([b,a0,a1,a2,a3,a4,a5,a6,a7,a8,a9],marker='o') label=[] for alpha in [0.001,100,1000]: ridge = linear_model.Ridge(alpha=alpha) ridge.fit(X, y) plt.plot(np.append(ridge.intercept_,ridge.coef_),marker='*') np.append(label,np.str_(alpha)) plt.legend(['实际系数','alpha=0.001', 'alpha=100','alpha=1000']) plt.xlim(-1,20) plt.title('拟合系数与实际系数对比') plt.xlabel('变量Xi') plt.ylabel('变量Xi的系数') plt.show()
|
逻辑回归
实现方面,逻辑回归只是对对线性回归的计算结果加上了一个Sigmoid函数,将数值结果转化为了0到1之间的概率(数值越大,函数越逼近1;数值越小,函数越逼近0),根据这个概率预测样本的类别。
scikit-learn机器学习模块的sklearn.linear_model提供了逻辑回归类LogisticRegression()
:
class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100, multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)
|
penalty:惩罚项,str类型,可选参数为l1和l2,默认为l2。用于指定惩罚项中使用的规范。newton-cg、sag和lbfgs求解算法只支持l2规范。
multi_class:分类方式选择参数,str类型,可选参数为ovr和multinomial,默认为ovr。ovr即前面提到的one-vs-rest(OvR),而multinomial即前面提到的many-vs-many(MvM)。如果是二元逻辑回归,ovr和multinomial并没有任何区别,区别主要在多元逻辑回归上。
LogisticRegression()
类的主要属性有:
classes_ : 数组, 形状为(n_classes, ),表示分类器的类标签列表。
coef_ : 数组, 形状为((1, n_features)或 (n_classes, n_features),表示决策函数中特征的系数。
intercept_ : 数组, 形状为(1,)或(n_classes,),表示决策函数的截距。
n_iter_ : 数组, 形状为(n_classes,)或(1, ),表示所有类的实际迭代次数。
LogisticRegression()
类的主要方法有:
decision_function(X)——预测样本的置信度分数。
densify()——将系数矩阵转化为紧密数组的格式。
fit(X, y[, sample_weight])——对给定训练数据拟合模型。
get_params([deep]) ——获取估计器参数。
predict(X)——预测X中样本的类标签。
predict_log_proba(X)——估计概率对数。
predict_proba(X)——估计概率。
score(X, y[, sample_weight]) ——返回对测试集的平均分类准确率。
set_params(**params)——设置估计器参数。
sparsify() ——将系数矩阵转化为稀疏格式。
import numpy as np from sklearn.datasets.samples_generator import make_blobs
centers = [(-2, 0), (2, 0)] X, y = make_blobs(n_samples=500, centers=centers, n_features=2, random_state=0)
plt.rc('font', size=14) plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus']=False plt.figure(figsize=(6, 4)) plt.scatter(X[np.where(y==0),0],X[np.where(y==0),1],marker='o',c='r') plt.scatter(X[np.where(y==1),0],X[np.where(y==1),1],marker='<',c='b') plt.xlim(-5,5) plt.ylim(-4,4) plt.legend(['y=0','y=1']) plt.title('使用make_blobs生成自定义中心的2类样本') plt.show() from sklearn.linear_model import LogisticRegression
logi_reg = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y)
y_predict=logi_reg.predict(X)
plt.figure(figsize=(6, 4)) plt.scatter(X[np.where(y_predict==0),0],X[np.where(y_predict==0),1],marker='o',c='r') plt.scatter(X[np.where(y_predict==1),0],X[np.where(y_predict==1),1],marker='<',c='b') plt.xlim(-5,5) plt.ylim(-4,4) plt.legend(['y_predict=0','y_predict=1']) plt.title('对X预测结果') plt.show()
plt.figure(figsize=(6, 4)) plt.scatter(X[np.where(y_predict!=y),0],X[np.where(y_predict!=y),1],marker='x') plt.title('预测错误的样本') plt.xlim(-5,5) plt.ylim(-4,4) plt.show()
|
多项式回归
scikit-learn对多项式回归没有提供直接的方法,而是在数据预处理模块sklearn.preprocessing提供了PolynomialFeatures()
类。
该类将数据集变换为具有高次项特征的新的数据集,将原始问题转化为线性回归问题。
用户再使用线性回归方法对转化后的数据集进行训练,从而间接的进行多项式回归分析。
PolynomialFeatures()类将其转化为具有3个特征的线性回归问题,这三个特征分别是x, x2, 和一个值全为1的常量特征。
输出形状为(n_samples,3), 格式为[1, x,x2]的新的数据集。
这时,新的数据集将是一个线性回归问题。使用线性回归方法对其拟合,既可以得到回归模型。
对多特征、有更高次项的样本,PolynomialFeatures()类同样通过增加高次项特征的方法,将其转化为线性特征数据集。
要预测新值,也需要使用训练的PolynomialFeatures()模型将其转为线性数据集,然后使用训练的线性回归模型对转化后的数据集进行预测。
PolynomialFeatures()
类的格式如下:
class sklearn.preprocessing.PolynomialFeatures(degree=2, interaction_only=False, include_bias=True)
|
参数degree接收整数,表示拟合目标中项的最高指数,默认为2。
PolynomialFeatures()类的主要参数如下:
powers_ : 数组,形状为(n_output_features, n_input_features),powers_[i, j]是第j个输入特征在第i个输出特征的指数。
n_input_features_ :输入特征的数量。
n_output_features_ : 输出的多项式特征的总数量。
PolynomialFeatures()类的主要方法如下:
fit(X[, y])——计算输出特征的数量。
fit_transform(X[, y])——拟合数据,并转化数据。
get_feature_names([input_features])——返回输出特征的名称。
get_params([deep])——获取估计器参数。
set_params(**params)——设置估计器参数。
transform(X)——将数据集转化为多项式特征。
先生成PolynomialFeatures()类的一个实例,然后使用fit()输出特征的数量再使用transform()将数据集转换为1次特征数据集(也可以使用fit_transform())拟合和转换数据,接着对转换后的数据进行线性回归。
单特征数据集多项式回归
import numpy as np import matplotlib.pyplot as plt n_samples=10 X=np.sort(np.random.uniform(-5,10,n_samples)).reshape(-1,1) y = 1.5 * X**2 -5*X -10 plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus']=False plt.rc('font', size=14) plt.figure(figsize=(6, 4)) plt.scatter(X,y) plt.title('原始样本集') plt.show() from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression poly = PolynomialFeatures(2) poly.fit(X) X2=poly.transform(X) print('原始数据集X的形状为:\n',X.shape) print('X转换为X2后的形状为:\n',X2.shape) print('原始数据集X为:\n',X) print('X转换为X2后为:\n',X2) lin_reg = LinearRegression() lin_reg.fit(X2,y)
x_test=np.sort(np.random.uniform(-10,15,100))
x_test2=poly.transform(x_test.reshape(-1,1))
y_test_predict=lin_reg.predict(x_test2) plt.figure(figsize=(6, 4)) plt.plot(x_test,y_test_predict,linewidth=2,c='y') plt.scatter(X,y) plt.title('多项式回归结果') plt.legend(['n=2','原始样本']) plt.show()
|
多特征数据集多项式回归
import numpy as np import matplotlib.pyplot as plt n_samples=30 X1=np.random.uniform(-1,1,n_samples).reshape(-1,1) X2=np.random.uniform(-1,1,n_samples).reshape(-1,1) print('X1的形状为:',X1.shape) print('X2的形状为:',X2.shape)
X1, X2 = np.meshgrid(X1, X2) y =X1**2+X2**2+0.3*np.random.randn(n_samples) print('生成矩阵后X1的形状为:',X1.shape) print('生成矩阵后X2的形状为:',X2.shape) print('y的形状为:',y.shape)
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = Axes3D(fig) ax.scatter(X1, X2,y,c='y') plt.title('原始样本集') plt.show() from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression
X=np.hstack((X1.reshape(-1,1),X2.reshape(-1,1))) poly2 = PolynomialFeatures(2) poly2.fit(X) X_poly=poly2.transform(X) print('原始数据集X的形状为:',X.shape) print('X转换为X_poly后的形状为:',X_poly.shape) lin_reg2 = LinearRegression() lin_reg2.fit(X_poly,y.reshape(-1,1))
n_test_samples=100 x_test1=np.linspace(-1.1,1.1,n_test_samples) x_test2=np.linspace(-1.1,1.1,n_test_samples) print('x_test1的形状为:',x_test1.shape) print('x_test2的形状为:',x_test2.shape) lin_reg2 = LinearRegression() lin_reg2.fit(X_poly,y.reshape(-1,1))
n_test_samples=100 x_test1=np.linspace(-1.1,1.1,n_test_samples) x_test2=np.linspace(-1.1,1.1,n_test_samples) print('x_test1的形状为:',x_test1.shape) print('x_test2的形状为:',x_test2.shape)
X_test=np.hstack((x_test1.reshape(-1,1),x_test2.reshape(-1,1))) X_test_poly=poly2.transform(X_test) y_predict=lin_reg2.predict(X_test_poly)
fig = plt.figure() ax = Axes3D(fig)
ax.plot_surface(x_test1.reshape(-1,n_test_samples), x_test2,y_predict.reshape(-1,n_test_samples), color='b') ax.scatter(X1, X2,y,c='y') plt.title('原始样本集与拟合曲面') plt.show()
|