机器学习的定义:
71e5f95d8c54ffe10766971ade87d58.jpg
以一种科普的视角,将发展史串联呈现出来
【中国工业与应用数学学会科普报告】西安交通大学孟德宇教授:《机器学习之道》-哔哩哔哩

A new AI spring

让AI重新焕发活力的三个故事.png

人工智能的定义

  • Artificial narrow intelligence (ANI):This specifies an AI agent that exceeds human-expert-level capabilities and skills in a narrow field. AlphaZero can be considered an ANI in the fields of Go, chess, and shogi. An algorithmic stock-trading AI agent that realizes a net return of consistently 100% per year (per anno) on the invested capital could be considered an ANI.
  • Artificial general intelligence (AGI):This specifies an AI agent that reaches human-level intelligence in any field, such as chess, mathematics, text composition, or finance, and might exceed humanlevel intelligence in some other domains.
  • Superintelligence (SI): This specifies an intellect or AI agent that exceeds human-level intelligence in any respect.

学习资料总结

周志华老师的《机器学习》和李航老师的《统计学习方法》教材对比:

拿集成学习举例,周志华的书更有框架一些,以从集成学习的概念出发一点点讲,但是李航的算法步骤更胜一筹,因为我没看懂周志华书上的AdaBoost模型,但是看懂李航老师书上的,相对而言李航老师书上提到的模型-策略-算法这个框架更为广泛一点,比较容易理解。

总结来说,私以为李航老师的《统计学习方法》对模型和算法的推导更容易理解逻辑透彻,周志华老师的《机器学习》一书对数学功底要求更高知识体系性更强